椅子式階段昇降機を設置する場合の必要段階幅寸法に関する実験研究（2）

研究目的
昨年度は、一般建物に設置する椅子式昇降機を対象に、階段内法、手摺・昇降などとの関係を概略、把握した。本年度は、住宅に設置する昇降機を対象に、昇降機使用者以外の階段利用者が支障なく昇降するために必要な段階幅寸法、及びこれに加えて、介助者が昇降機使用者に対し、この機器と車椅子との間を支障なく移乗させるために必要な階段上下の移乗スペース寸法について、実験を通じて定量的検討を加え、設計の基礎資料を得ることを目的とする。

実験方法
1) 実験概要：上記目的より、以下の2つの実験を行った。
実験1: 住宅における必要段階幅寸法に関する実験
実験2: 階段上の必要移乗スペースに関する実験
2) 実験装置：図1のような原寸大模型を作成した。階段及び移乗スペース部は内法を変化できるよう移動可能なものとし、手摺は着脱可能なものとした。椅子本体は、大同工業の製品を使用した。また、車椅子は通常の介助型車椅子を使用した。実験1・2の段階は、段上：21cm、踏面：21cmとした。照明は通常の状態とした。
3) 実験項目：本実験の実験項目及び設定条件を表1に示す。なお、実験2では、移乗スペースは正方形平面とし、寸法を示すこととした。また、移乗の際の車椅子の位置は図1に示すように、最も移乗しやすいと考えている角度30度をとり、一端を壁につけた状態でスペースを変化させた。なお、昇降機の椅子は、階段上におけるみ90度回転できる状態を想定した。
4) 被験者：実験1・2では各々本学の学生6名・10名を対象とした。昇降機使用者は実験1ではダミー、実験2では成人の平均に近い身長体重の男女それぞれ1名とし、この場合、実験上は必要最小限の力しか出せないものとした。
5) 実験の具体的方法：実験1では①通やすさについての評価を求、②3次元ビデオ動作解析システムにより人体操作を求、実験2では被験者に介助をさせ①移乗のしやすさについての評価を求、②同システムにて介助者の人体操作を求。なお、各々の評価尺度を表2に示す。

実験結果及び考察
観察実験について
1) 図2・3は、荷物有、無の場合の評価平均をまとめた結果（Kaori Kawamura et al）
果である。これを見ると、当然の結果ではあるが荷物有・無ともに手携無の方が、椅子が閉の方で、内法が広い方が、評価が高くなっている。荷物の有無については、荷物有のほうが若干ではあるが評価が高くなっているが、これは被験者が階段昇降の際に、荷物を上の方にあけ、人体の最外体幅が小さくなためであると思われる。ここで、ほぼ問題ないとされた4の評価以上でこれを設置すべきであると考え、かつ安全面から手携有の増設をとることにすると、荷物の有無を問わず閉において、昇・降共に内法75cm程度以上の内法が必要であることが分かる。

2）被験者の移動軌跡について：1）で問題ないとされた、荷物有・手携有・閉・降・内法76cm、および荷物無・手携有・閉・降・内法76cmの軌跡を図4・5に示す。この図は、頭頂部および両肩部の平面位置を一定時間毎にプロットしたものである。これらをみると比較的安定した軌跡となっており、通行に支障がなかったことがうかがえる。また、椅子式昇降機に人が乗っている場合、90cm程度であっても軌跡に大きな乱れが見られ、通行に大きな支障が生じていることがうかがえた。

実験2について

1）被験者による評価：図6・7は、階段上・下の移乗スペースにおけるそれぞれの条件の場合の評価平均をまとめた結果である。これを見ると、当然の結果であるが、移乗スペースが広くなるほど評価が高くなっている。これらのグラフから、ほぼ問題ないとされた2の評価以上の寸法が必要であると考えると、階段上上の移乗スペースにおいて、椅子を回転させない場合は100cm程度以上、回転させる場合は130cm以上、駅下において、回転させない場合は125cm程度の移乗スペースが必要であることがわかる。

2）被験者の人体移動軌跡について：1）で問題ないとされた図8・9の人体移動軌跡を見ると、移乗動作に大きな乱れが見られないことから、介助に支障がなかったことがうかがえる。なお、図9の回転させる場合については、130cm×85cm程度のスペースで介助できることがわかる。

まとめ

本実験の結果、以下の結論が得られた。①住宅において、椅子式昇降機の椅子を閉じた状態で使う場合75cm程度以上の階段幅寸法が必要である。②階段上下の移乗スペースは、場合によっても違うが、100cm～130cm角程度以上が必要である。なお、無理をすれば移乗できるような位置関係での検討は行っていないが、住宅でよく見られる80cm内外の開下幅では、移乗はかなり無理であろうことが推測された。なお、本研究は文部省科学研究費の補助を得たものであり、遂行にあたっては平成9年度産業技術総合施策研究費の助成を受けて実施した。