住居内に設けられる壁付き手すりの取付け強度に関する実験研究

- 手すりに加わる人の力の計測 -

手すり 取付け強度 バリアフリー住宅 人の力

1.研究目的

その3では、住居内に設置される手すりの種類・設置位 置および使われ方について調査した上で、類似の動作・行 為ごとに整理した。本報では、それぞれの項目について人 間が日常生活でどの程度の力を加えるかを被験者実験によ り明らかにし、手すりの取付け強度を決める為の知見を得 ることを目的とするものである。

2. 研究方法

(1)実験装置

図1に実験装置全体の略図を示す。この装置は実際の手 すりと同様の取付け位置を再現する為に可変となっており、 手すりの取付け部分には反力計(キスラー社製9281c)が 設置されている。この反力計を用いて壁面内の水平(Fx)・ 鉛直(Fv)方向及び面外水平(Fz)方向の3軸の力を時系 列データとして計測する事ができる。データの計測は、コ ンピュータ(データの記録はDKH社製データ取り込み・解 析プログラム「Wad Ver.1.99」を使用)を反力計に接続し て行った。なお一般的な住居内を想定し、装置の床はフ ローリング仕上げとし、手すりは直径34mm樹脂被膜製の ものを使用した。なお床、手すりの素材滑りによる影響は 無いように配慮した。

(2)被験者

本研究では手すりの取付け強度に関する知見を得ると言 う目的から、体格が大きい傾向にある若年者(男性10名、 女性5名)を対象として被験者とした。当然、手すりの使 用に関しては高齢者の利用も十分配慮されるべきである。 (3) 実験方法

その3で分類した手すりの中から本報では、立ち座り、 またぎ段差昇降、単純段差昇降及び階段歩行に着目した。 表1のような再現装置を用い、このような動作・行為を行 うために必要な座面や段差、またぎ部などの床形状を再現 した。再現装置の寸法は、実際にその手すりの設置される 空間を想定し近似的に決定した。それぞれの動作・行為に ついて考えうる範囲で手すりの取付け位置を変化させ被験 者が手すりに加えた力を計測した。手すりに加わる力は計 測したFx、Fy、Fzの合力から求め、この合力の最大値を 用いて検討を行う。なお手すりの取付け位置は横手すりの 場合、床からの高さをhとし、縦手すりの場合、再現装置 の中心を I = 0 として被験者の進行方向を正とした。

3. 研究結果および考察

(1)全計測結果

図2は、縦軸にそれぞれの被験者が手すりに加えた力 を、横軸に動作・床形状をとり、その最大値、最小値、平

Experimental study on strength of handrail installation on wall in dwellings (part4)

The measurement of human load to handrails

正会員 豊嶋 純* 同 加藤 正男 *5 同 一閱 * 矢島 規雄 *3 久保田 布理 重性 英雄 *1

均値を表わしたものである。これを行為別に見ると、低 い位置での立ち座りに高い荷重が加えられ、また横手す りよりも縦手すりに荷重が加えれられているのが分かる。 単純段差昇降では横手すりの方に荷重が加えられている のが分かる。また特定の被験者が大きな荷重を加えたた め、平均値と最大値との差が大きく開いているので、以 降は平均値を用いて検討を行う。

単純段差昇降の場合、段差Hが大きくなる程荷重が増 加する傾向があり、縦手すり使用時で比較すると上がり 框を想定したH = 400で昇り時9.6kgf、降り時9.8kgf、 部屋の出入り口等の段差を想定した H = 50 では昇り時 3.2kgf、降り時2.8kgf の荷重が加えられていた。

またぎ段差昇降の場合はH1とH2の差が大きい程荷重 が増加する傾向が見られ浴槽を想定した H1:300,H2: 600,W:100の場合、縦手すり使用時で比較すると昇り 時10.5kgf、降り時9.8kgf、ベランダと屋内の出入り口 等を想定した H1:100,H2:150,W:100 では昇り降り 共に 4.0kgf 程度であった。

立ち座りの場合は、座面高日が低くなる程荷重が増加 し、H = 200 の時縦手すり使用時で比較すると立つ時 14.0kagf、座る時 12.6kgf の荷重が加えられていた。

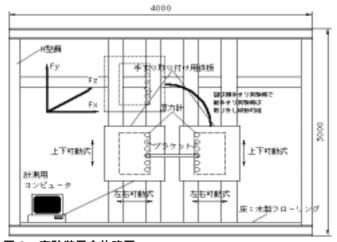
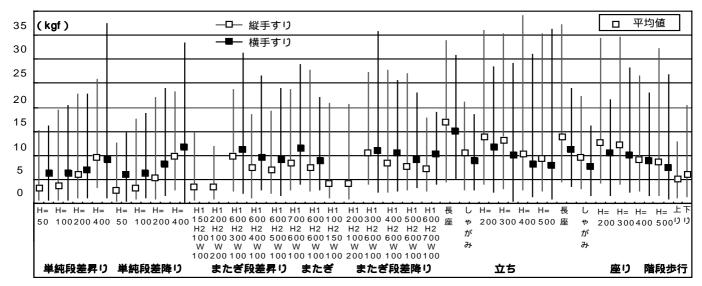



図1.実験装置全体略図

表 1.動作・行為再現装置

TOYOSHIMA Jun et al

全計測結果 図 2

また、長座状態からの立ち座りでは全実験中最大の荷 重が加わっており、立つ時 16.9kgf 座る時 13.8kgf の荷 重が得られた。しゃがみ状態からでは立つ時 10.5kgf 座 る時 9.6kgf の荷重が加えられていた。

階段歩行の場合は、上りより下りの方が荷重が大きく、 6.1kgf の荷重が加えられていた。

(2)動作・行為別の詳細な比較

図3は、H = 400の単純段差昇降時の手すり取付け位 置の違いによる荷重の違いを表わしたものである。この 図より縦手すり使用時では取付け位置の違いによる影響 はあまり見られない事、横手すり使用時では取付け高さ が低くなる程荷重が大きくなる事。縦手すり使用時より も横手すり使用時の方が大きな荷重が加わる事が分かる。

図4はH1:300,H2:600,W:100のまたぎ段差昇降 時の手すり取付け位置による荷重の違いを表わしたもの である。この図よりまたぎ段差昇降時には、あまり手す り取付け位置による荷重の違いがない事が分かる。また ぎ段差昇降は、立ち座りや単純段差昇降と比較して、被 験者の上下移動が少なく、姿勢保持の為に使われるとい う要素が大きい為と思われる。

図5はH=200の立ち座り時の手すり取付け位置によ る荷重の違いを表わしたものである。この図より縦手す りは、前方にある程大きな荷重が加わる傾向にある事、 手すりが被験者の側方にある場合と前方にある場合では 前方にある方が大きな荷重が加えられる事が分かる。

4.まとめ

本研究で、動作補助手すりに人がどの程度力を加えるか を定量的に把握した。最後に本研究に際して平成14年度 東京理科大学卒研生秋田真一氏、滑川裕太氏の協力を得た。 ここに記して謝意を表する。

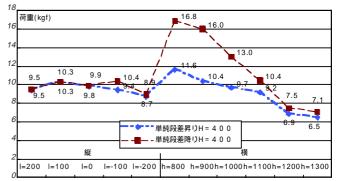


図 3 単純段差昇降の荷重の比較

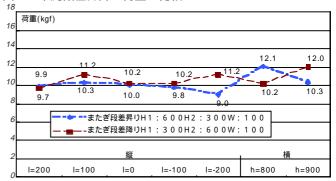


図 4 またぎ段差昇降の荷重の比較

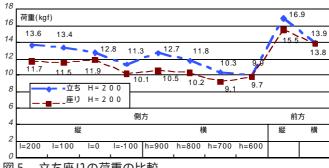


図 5 立ち座りの荷重の比較

^{*1}東京理科大学 教授

^{*2} 独立行政法人 建築研究所 博士(工学)

³ 宋示理科大学 助手 工修 *4(株)久保田工務店 工修

^{*5} ナカ工業(株) 技術研究所

^{*6} 東京理科大学大学院生

¹Prof., Dept. of Architecture, Faculty of Eng. Tokyo Univ.of , Scienge

²Independent Administrative Institution, Building Research Ites DtuEng

³Research Assoc., Dept.of Architecture, Faculty of Eng, Tokyof USmorence, M.Eng

⁴Kubota Construction Inc., M.Eng

⁵Technical Laboratory, Naka Corporation

⁶Graduate Student, Dept. of Architecture, Faculty of Eng, Toky. of UScience