個体領域の重なりの観点から見た「R. ソマーの実験」に関する一検討

大竹 宏之*1 太田 剛寛*1 久保田 一弘*2 直井 英雄*3
An examination on "R. Sommer's experiment of personal space" from view point of the overlapped personal space

Otake Hiroyuki, Ota Takehiro, Kubota Kazuhiro, and Naoi Hideo

1. 検討の主旨

直井研究室では、個体領域（パーソナル・スペース、以下 P.S.と略す）の概念を建築空間の設計に結び付ける研究の一環として、個体領域の概念を重なりを研を目的にした検討を進めてきた。その手始めとして、ロバート・ソマーの著書「人間の空間」に紹介されている矩形のテーブルを基とする場合の席の選択に関する有名な実験（図1）を例にとり、席の選択傾向と個体領域の重なり程度の関係について検討を試みたので報告する。

<table>
<thead>
<tr>
<th>配置</th>
<th>配置を選んだ頻度（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>会話</td>
</tr>
<tr>
<td>CASE A</td>
<td>42</td>
</tr>
<tr>
<td>CASE B</td>
<td>46</td>
</tr>
<tr>
<td>CASE C</td>
<td>5</td>
</tr>
<tr>
<td>CASE D</td>
<td>0</td>
</tr>
<tr>
<td>CASE E</td>
<td>11</td>
</tr>
<tr>
<td>CASE F</td>
<td>0</td>
</tr>
</tbody>
</table>

図1 矩形テーブルでの席の選択

2. 「R. ソマーの実験」の概要

R. ソマーが行った矩形テーブルにおける実験は、各学生に対して、矩形のテーブル （短辺に1人、長辺に2人が座る）の席のなかで、自分の席と一人の友人の席を示すよう要求される。その結果は、次のようであった。

すなわち、図1に示すように、普通の話あいしながら、圧倒的に、テーブルの角をはさんで、向かい合うような位置を選んだ。その理由を尋ねたところ、こうした位置での物理的な近さや視覚的な接触を強調された。協力する活動の場合は、隅あわ位置が多く選ばれ、その理由は、物の受け渡しが容易であるということがあっただろう。競争の場合には、一般に、向かいあう形を選んだ学生は、この形が競争を促進するといわれる。互いに離れる形や反対の隅に座る形は、同じテーブルで別に作業する学生（同期生作業の組）によって選ばれた。この場合には、目の接触が少ないこと、対面の席からの距離を250mmとした。

（2） 個体領域P.S.の形状・寸法の仮定

P.S.の形状・寸法については様々な提案や測定例がある。しかし、ここでは建築学内の設計に生かす目的で測定されたと判断できる測定例を用いた。すなわち、橋本雅志、西出和彦らが1981年の日本建築学会大会学術講演会関係集会で発表したP.Sのレベル3と、本研究室の既往の実験により得られたP.Sの2つの測定例の平均値をラウンドナンバーで表したものとした図2。この前1300mm、底560mm、幅650mmという値はエドワード・ホワイトの個体距離にもほぼあてはまり、妥当であると考えた。なお、いうまでもなく、この寸法はあくまで検討のための仮定であり、その値の精度についても、数値はあらゆる場合で争うようなものではないことは認識しておく必要がある。

(*1 東京理科大学院生, *2 同大学講師, *3 同大学教授)
図2 本研究における個体領域

（3）個体領域（PS）の重なり面積率の算定
図-1のテーブル配置で、それぞれにおいて、上記(1)(2)で仮定した個体領域を各席に配置した際の個体領域面積の重なり部分の率を、以下で示すに従い、AutoCADを用いて、CAD図より読み取った。（図-3）

個体領域の重なり部分の面積	二人の個体領域の面積	互いに重なる面積
CASE A	37.6%	12.8%
CASE B	26.3%	10.7%
CASE C	8.7%	5.4%
CASE D		
CASE E	21.9%	15.8%
CASE F	17.2%	12.9%

図3 個体領域の重なり面積率の算定結果

4. 検討結果および考察

個体領域の重なり面積率の算定結果を図-3に示す。また、このデータとR・ソマーの実験結果を組み合わせて作成したグラフを図-4に示す。なお、データは少ないが試みに相関関係をとってみたところ表1の結果となった。

表1 両データの相関係数

<table>
<thead>
<tr>
<th>相関係数</th>
<th>会話</th>
<th>協力</th>
<th>同時作業</th>
<th>競争</th>
</tr>
</thead>
<tbody>
<tr>
<td>会話</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>協力</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>同時作業</td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>競争</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図4 および表1を見ると以下のようことが言える。

両者の関係が最も明確に見られるのは「会話」で、かなり強い正の相関が見られる。

「協力」についても正の相関が見られるが、特異のは2人が同じ方向に向かって並んで座るCASE Eで、これより高い重なり面積率のCASE A、Bよりこの目的に関してはふさわしいということであろう。

「同時作業」は作業者を重ねるに近いという要求もあるため相関はほとんど見られない。ただし、CASE Bは特異で被験者は、協力的な作業に意識したのであろう。

「競争」についてはほとんど相関は見られない。ただここでもCASE Bは特異でこの配置は協力的な関係にも効果的な関係にもなりうるということである。

5. まとめ

以上から仮説の見解を述べれば、「親密な関係のよいような関係」についての関係について、個体領域重なり面積率で説明できたようだが、「協力的な関係の相関的な関係」についての相関の間の関係について、共に個体領域重なり面積が高くなる傾向にあるといえそうだ。この追及は今後の課題としている。また、この研究の結果、これまでの仮説の個体領域の心理的関係を考察する場合に個体間距離という物理的関係が用いられているが、個体領域の重なりを一つの有効な物理的関係として使用するのではいかなかったと考えられる示唆が得られた。

本稿を基にし、大阪大学工学部の木下・木下、平成20年度卒業研究学生藤原明敏氏、前島英幸氏、平成20年度卒業生生木村拓夫氏、平野信也氏、福本茂之氏、高村敏之氏、木村英美氏、黒澤美穂氏の協力を得たことに記して謝意を表する。

参考文献

1) Edward T. Hall著、日高敏隆ほか訳：かくれた次元、みすず書房、1970
2) Robert Sommer著、橋本雄一郎：人間の空間-デザインの行動研究、鹿島出版会、1972
3) 橋本雄一郎、西田和伸他、1981年 日本建築学会大会 学術便覧第6空間における人間の集合の研究 その4 Personal Space と壁にそれに対して影響
4) 佐野英孝、平成20年度東京理科大学卒業研究「衝突状態時の個人領域に及ぼす影響に関する実験」